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Services
Namespace: ttgLib::Services

In ttgLib, service is an interface that implements certain functionality. Most of ttgLib features are implemented 
as services. For example, Logger service is responsible for logging application activity, and Timer service 
implements time management and time measurement.  Every service is a singleton available from static  
method  GetRef()  of  the  service  interface.  For  instance,  the  call  Timer::GetRef()->GetSeconds()  returns 
current time in seconds.

Service starting
Services are initialized with the instantiation of the ServiceStarter class that requires one of the preset 
modes  to  be  passed  as  an  argument.  These  modes  are  implemented  as  static  methods  of 
ServiceConfigPresets class:

– BasicConfig().  Defines  the  mode  that  prohibits  all  incoming  connections  to  ttgLib.  It  is 
intended for use when Utility subsystem functionality is not required.

– LocalUtilityConfig(). Allows utilities to connect to the executable at runtime, but only if the 
request is sent  from the loopback network interface.  This mode is ideal for debugging or to  
ensure high security level.

– RemoteUtilityConfig().  Enables  incoming  connections  from  any  network  accessible 
computer  via  utilities  or  web browser.  Port  to  be  used  to  listen  to  the  connections  can  be 
specified as an argument.

– RemoteWithAuthUtilityConfig(). This mode is similar to the previous one but it requires 
HTTP authorization before connection can be established. Login and password are specified as 
arguments.

Here is the typical code to enable and initialize ttgLib library:

#include <ttgLib.h>

using namespace ttgLib::Services;

int main()
{
   ServiceStarter ss(ServiceConfigPresets::BasicConfig());
   //Computing.
}

When a specific configuration is required for a particular service, a preset mode can be overridden using the 
'+' operator and configuration parameters of this service:

ServiceStarter ss(ServiceConfigPresets::BasicConfig() + LoggerConfig(“MyLog.txt”))

The settings that are added as a right operand override the ones on the left. This allows to change any basic  
mode.
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Dynamic parameters
Namespace ttgLib::Parameters

The  basic  mechanism that  allows  ttgLib  library  to  integrate  into  the  application  being  optimized  is  the 
dynamic parameters subsystem. These parameters are implemented as template classes and are equivalent 
to the ordinary variables from the developer’s point of view. Dynamic parameters are needed for optimization  
subsystem to  gather  statistics  and  to  tune  application’s  performance.  Furthermore,  the  network  control 
subsystem allows to monitor the values of dynamic parameters and even to change their values at runtime  
from a remote computer using ttgUtils or web browser.

Basic types of parameters

The following basic parameter's types are currently implemented:

– Parameter<T> is the basic template class that allows making almost any variable changeable 
at runtime. It is intended primarily for use when external access to a variable that represents an  
iterator, an information text, etc. is required. Examples:

Parameter<int> imax = 10;
Parameter<double> res = 0.0;
//...
for (int i = 0; i < imax; i++)
   res += arr[i];
Parameter<std::string> out = “Finished”;

– BoundedParameter<T>  extends the  basic  parameter  with  the  boundary  support.  In  other 
words, the corresponding dynamic variable can hold any value from [lo, hi] interval which is set 
in the constructor. Use of this parameter for “magic variables” instead of the basic ones speeds 
up optimization process because hinting the possible values interval reduces the optimization 
area. Examples:

BoundedParameter<int> block_size(16, 32);
block_size = 24;
//...
for (int i = 0; i < size / block_size + 1; i++)
   for (int j = 0; j < block_size; j++)
      //...

– EnumParameter. This is a version of a dynamic parameter for enumeration. It allows to define 
the enumeration as a set of elements of the basic type. This set will then be processed in the 
same way as using the parameter of the Parameter<T> type provided that only values from 
this enumeration can be assigned. This version is intended both for facilitating any manipulations 
with the software via utilities and for the optimization itself. Examples:

enum basicEnum { first, second, third };
//...
EnumParameter en(“{ first, second, third }”);
en = first;
//...
switch (en)
{
   case first:
      //...
   case second:
      //...
}

Enumeration members can be defined in two ways. The first one implies the usage of a string 
like ”{ value1, value2, value3, valueN }” where valueX is a string equivalent of the 
corresponding member. The second method is to create a container std::vector<T>, to fill it 
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in with necessary enumeration members and then to pass it  to the parameter constructor. It  
should be noted that the first method is applicable only when the basic type is the standard one 
and can be recognized by the string value while the second method is more universal and as 
such can be also used for user-defined types. Therefore, the above example can be rewritten in  
the following way:

std::vector<float> en1Vals;
en1Vals.push_back(-1.0);
en1Vals.push_back(0.0);
en1Vals.push_back(1.0);
EnumParameter<float> en1(en1Vals);
en1 = 0.0f;

std::vector<int> en2Vals;
en2Vals.push_back(0);
en2Vals.push_back(1);
en2Vals.push_back(2);
EnumParameter<int> en2(en2Vals);
en2 = (int)(en1 + 1.0);

It is also worth mentioning that the string names of enumerated elements under which they will 
be mapped in external utilities can be also reassigned. To this end, a function like std::string 
(*NameConverter)(T) that for a given element returns its mapped name should be passed to 
the parameter constructor. 

– ActionParameter. Allows  to  handle  external  events  that  can  be  initiated  both  by  the 
optimization subsystem and from the network control subsystem. Examples:

void ProcessEvent(Void)
{ printf(“Event has been processed\n”); }
//...
ActionParameter action;
action.OnTriggered() += MakeDelegate(ProcessEvent);
//...
action.Trigger();

– ParameterGroup. Allows to group parameters or other groups for systematization purposes. In 
optimization process, groups are used to specify parameters that influence performance of the 
specific kernel. Network control shows each parameter group as a tree node. Examples:

Parameter<int> p1;
BoundedParameter<double> p2(0.0, 1.0);
ActionParameter p3;

ParameterGroup group;
p1.Attach(&group);
p2.Attach(&group);
p3.Attach(&group);

Complex parameter types

Complex parameter types are built upon the basic ones and implement the most frequently used patterns.  
These parameters are recognized by network control subsystem to display a specific visualization UI and by  
optimization subsystem to enhance the optimization process using heuristics based on the type’s nature. 
Currently the following complex parameter type are implemented:

– GridParameter1D allows to specify a decomposition of an arbitrary one-dimensional array into 
unequal parts using dynamic parameters. It is primarily intended to perform a load balancing 
between non-uniform computational devices and/or nodes. Therefore, an optimal decomposition 
can be easily revealed by the optimization subsystem similarly with the following example:

GridParameter1D grid(N); //constructing grid with N cells
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grid.SetBoundaries(0, 1024);
grid.SetAlignment(128);
//...
for (int i = 0; i < grid.GetCount(); i++)
   device[i]->compute(grid[i].GetLowerBoundary(), grid[i].GetUpperBoundary());

– CudaGridParameter1D. Opposite  to  the  previous  type  GridParameter1D, 
CudaGridParameter1D is intended to define such a parameter of starting CUDA-kernels as 
the number of threads running on a single multiprocessor since this parameter directly impacts 
on the performance. It is important that the functionality of this parameter can be implemented, 
for instance, via  EnumParameter<UInt32>. However, its allowed values strongly depend on 
GPU architecture. This type has been introduced to facilitate the programming for GPUs. 
To  get  the  current  number  of  threads  (or  the  block  size),  one  should  call  the  size_t 
GetBlockSize() method. The returned value will  depend on the thread where this method 
was called. If the thread is associated with a virtual ttgLib device which is always true for hybrid  
primitives, the method will return the size supported by the device. In other case, the method will  
call  for  the  properties  of  CUDA device  that  has  been  chosen  in  the  given  thread  via  the 
cudaSetDevice() method from CUDA Runtime API. For example, if computations on a graphics 
accelerator are accomplished with CUDA Compute Capability 1.3, the maximum allowed block 
size equals 512 threads while for an accelerator with Fermi or Kepler architecture, the block size  
can reach 1024 threads. Examples:

CudaGridParameter1D p;
dim3 threads(p.GetBlockSize());
dim3 grid(N / p.GetBlockSize());

someCudaKernel<<<grid, threads>>>();

To simplify the usage of this parameter, an auxiliary method std::pair<size_t, size_t> 
GetGrid(size_t threadCount) has been introduced. It allows one to create such a number 
of blocks of a given size that the total number of their threads will be definitely not less than 
threadCount. Therefore, the previous example can be rewritten in the following way:

CudaGridParameter1D p;
dim3 threads(p.GetGrid(N).second);
dim3 grid(p.GetGrid(N).first);

someCudaKernel<<<grid, threads>>>();

To change the value of this parameter, one can use either the optimization subsystem that will  
calculate  the  best  value  of  the  block  size  or  the  void  SetNearestValue(size_t 
blockSize) method that will assign a correct value which is closest to the required one.

Parameters' functionality

Most of parameters have the following common methods which can be divided into three groups:

– Parameter tree management:
– void Attach(const char *name, ParameterGroup *group). Adds the parameter 

to the specified parameter group with the specified name. Parameter can be a member of 
one group only. If  NULL is passed as the parameter group pointer the parameter will  be 
added to the root user parameter group.

– void Detach().  Detaches  the  parameter  from  the  group.  Can  lead  to  unpredictable 
results if the parameter is used in the optimization session.

– bool IsAttached(). Returns true if the parameter is attached to any parameter group, 
or false otherwise.

ParameterGroup group;
Parameter<int> p1;
Parameter<float> p2;
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p1.Attach(&group); //Attaching “p1” to “group”.
group.Attach(“My group”); //Creating root-level group.
p2.Attach(“My parameter”); //Creating root-level parameter.
//...
if (p1.IsAttached())
{
   p1.Detach();
   p1.Attach(“Another my parameter”);
}

– Parameters' event handling:
– Event<ReleasableObject  *>  OnRelease().  The  event  that  is  raised  when  the 

parameter has been released.
– Event<ValueChangedEventArgs<T> > &OnValueChanged(). The event that is raised 

whenever the value of the parameter has changed.

void OnReleaseHandler(ReleasableObject *)
{ printf(“Parameter was destroyed\n”); }

void OnValueChangeHandler(ValueChangedEventArgs<T>)
{ printf(“Parameter's value was changed\n”); }

Parameter<int> p;
p.OnRelease() += MakeDelegate(OnReleaseHandler);
p.OnValueChanged() += MakeDelegate(OnValueChangeHandler);
p = 10;
p = 9;
p.OnValueChanged() -= MakeDelegate(OnValueChangeHandler);
p = 8;

– Changing parameters' value and behavior
– const T &GetValue(). Returns current parameter value. Equivalent to the implicit cast 

operator. Intended for the cases when compiler fails to perform an implicit cast. Examples:

Parameter<int> p = 3;

printf(“%d != 3”, p);
printf(“%d == 3”, p.GetValue());
printf(“%d == 3”, (int)p);

– SetValue(const  T  &value). Sets  current  parameter  value.  Equivalent  to  the 
assignment operator.

– ReadOnlyMode GetReadOnlyMode(). Returns current read/write policy of the parameter:
– None. Parameter value can be changed both by the application itself and by the network 

control subsystem.
– Utilities.  Restricts  the  network  control  subsystem from changing  the  parameter 

value. Can be useful for the internal variables that need to be visible from the network, 
but an attempt to change their value will lead to an error.

– Core. Restricts application from changing the parameter value.
– All.   Restricts  both  the  application  and  the  network  control  subsystem  from 

changingthe  parameter value.
– SetReadOnlyMode(ReadOnlyMode  mode).  Sets  current  read/write  policy  of  the 

parameter.

Parameter<std::string> currentAction = “None”;
currentAction.SetReadOnlyMode(Utilities);
currentAction.Attach(“Current action”);
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EnumParameter requiredAction(“{ Reading, Writing, Processing }”);
requiredAction = 0;
requiredAction.SetReadOnlyMode(Core);
requiredAction.Attach(“Required action”);

while (true)
{
   switch (requiredAction)
   {
      case 0:
         //...
         currentAction = “Reading data”;
         break;
      case 1:
         //...
         currentAction = “Writing data”;
         break;

      case 2:
         //...
         currentAction = “Processing data”;
         break;
   }
}
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Hybrid primitives
ttgLib::Primitives namespace

To simplify the implementation of various parallel programming patterns, ttgLib library introduces a number of  
hybrid primitives that allow load balancing between all available computing devices. With these primitives 
built upon dynamic parameters it is possible to group several alternative kernels implemented using NVIDIA 
CUDA,  OpenCL and/or  SSE/AVX  extensions.  As  a  result,  an  optimal  kernel  will  be  chosen  for  every 
computational device, and the load will be balanced between all devices chosen.

HybridFor

HybridFor primitive implements the parallel_for  pattern that  allows to replace a single  loop with  several 
independent  loops  each processing its  own portion  of  data  on its  target  computing device.  To use the 
primitive, an instance of the HybridFor class is required which is then used to register all available kernels 
and to initiate the computation process. Examples:

void cudaKernel(void *data, size_t lo, size_t hi)
{ /*Processing data array sub-range using current CUDA-device*/ }

void sseKernel(void *data, size_t lo, size_t hi)
{ /*Processing data array sub-range using SSE extensions*/ }

void sseOmpKernel(void *data, size_t lo, size_t hi)
{ /*Processing data array sub-range using SSE extensions and OpenMP directives*/ }

//...

HybridFor hFor;
hFor.CUDA() += cudaKernel;
hFor.Serial() += sseKernel;
hFor.Parallel() += sseOmpKernel;
std::vector<int> data;
//...
hFor.Process(data);

Kernel syntax is described in details in another section. Except for this, the primitive has the following non-
general members:

– SetAlignment(size_t alignment). Allows to set the alignment of the intervals passed to 
each kernel. Intended for use when the technology enforces specific alignment (for example, to 
enable SSE).

– SetMaxRange(size_t maxSize). Under development.

HybridTask (not available in current version)
This primitive is intended for launching a set of stand-alone non-uniform tasks when each task can run on  
one of available units probably with the use of alternative processor cores. For instance, this allows to load  
all computing devices uniformly when running batch tasks and for each of them not only an optimal kernel  
will be assigned but tasks for which the device demonstrates the highest performance will be also passed to  
it. Examples:

void cudaKernel(void *data)
{ /*processing data using current CUDA-device*/ }

void cudaKernel_Textures(void *data)
{ /*processing data using current CUDA-device using texture memory*/ }

void cpuKernel(void *data)
{ /*processing data using current CUDA-device*/ }

//...
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HybridTask hTask;
hTask.CUDA() += cudaKernel;
hTask.CUDA() += cudaKernel_Textures;
hTask.Serial() += cpuKernel;
std::vector<void *> data;
//...
hTask.Process(data);

A detailed  description  of  the  supported  kernel  is  provided  in  the  next  Section.  However,  one 
particular method should be mentioned for this primitive:

– SetMetrics(double (*f)(void *)). Defines a metrics for an abstract task complexity (in 
relative units). The processing time on the same accelerator is assumed to linearly depend on 
the tasks complexity thus enabling to more efficiently distribute the computational load between 
all computing devices and to choose tasks of optimal size for each type of computing devices.

Kernel syntax

To specify a kernel, the developer is required to implement a function or a method that takes a pointer to the  
data being processed and additionally some primitive-specific data. Arguments of these functions should 
match one of the following signatures that the primitive supports:

Primitive type Supported kernel signatures
HybridFor void kernel(void *data, size_t lo, size_t hi);

void kernel(size_t lo, size_t hi);
void kernel(HybridForKernelData data)

HybridTask void kernel(void *data);
void kernel();
void kernel(HybridTaskKernelData data)

If the kernel is implemented as a function, it can be simply added to the primitive with the '+=' operator. If the  
kernel is a member of a class, it must be first cast to the delegate with MakeDelegate() function, and then 
added with the '+=' operator. Examples:

void functionKernel(HybridTaskKernelData data);

class MyClass
{
    public:
        void methodKernel(HybridTaskKernelData data);
        static void staticMethodKernel(HybridTaskKernelData data);
};

//...

HybridTask hTask;
hTask.Serial() += functionKernel;
hTask.Serial() += MakeDelegate(functionKernel);
hTask.Serial() += MakeDelegate(MyClass::staticMethodKernel);
MyClass mc;
hTask.Serial() += MakeDelegate(&mc, &MyClass::methodKernel);

Sometimes, there are several dynamic parameters that influence the kernel’s performance and that can be 
optimized. They can be added to a single parameter group that in turn is then passed to an auxiliary class  
upon registering the kernel. Examples:

BoundedParameter<int> blockSize(10, 32);
ParameterGroup kernelParameters;

void kernel(void *data);

//...
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HybridTask hTask;
blockSize.Attach(&kernelParameters);
hTask.Cuda() += HybridTaskKernel(kernel, &kernelParameters);

The parameters passed to the primitive will be independently optimized to achieve maximum performance of 
the  current  kernel.  Due  to  the  fact  that  one  kernel  can  be  executed  by  several  computing  devices 
independently and simultaneously, there will be created a separate instance of each parameter value for 
each device. Therefore, in the previous example, blockSize will evaluate to 16 in the CPU kernel and to 32 in 
the GPU kernel.

At runtime, every kernel is executed in a separate thread associated with the target computing device. In  
case of error, the kernel must throw an exception that looks like or is derived from std::runtime_error. 
This exception is caught in the device thread and re-thrown in the calling thread.

To  detect  the  parameters  of  computing  device  the  kernel  is  running  on,  the  following  methods  are 
implemented in the DeviceManager service:

– CudaDevice *GetCurrentCudaDevice(). Returns a pointer to an object that corresponds 
to  the  current  CUDA  device.  If  this  method  was  called  outside  the  primitive  or  the 
CudaDevice::Execute() method, an exception will be thrown.

– X86Device *GetCurrentX86Device(). Returns a pointer to an object that corresponds to 
the  current  x86  compatible  device.  If  this  method  was  called  outside  the  primitive  or  the 
X86Device::Execute() method, an exception will be thrown.

Examples:

void cudaKernel(void *data)
{
   CudaDevice *dev = DeviceManager::GetRef()->GetCurrentCudaDevice();
   double gflops;
   //...
   printf(“%s performance: %lf Gflops\n”, dev->GetStaticInfo()->GetName(),gflops);
}

Choosing the devices

Primitive registration of kernels is based on the APIs they support. That is, if there is a CPU and NVIDIA 
GPU, ttgLib will discover four computational devices: 1 x86 compatible, 2 OpenCL compatible and 1 CUDA 
compatible. If several kernels suit to one physical device, the one demonstrating the best performance will be 
chosen.

The following logical devices are supported when kernels are added to the primitives:
– CUDA(). Stands for GPU that supports NVIDIA CUDA technology.
– Parallel(). Enables to set kernel that is capable of using all the cores of CPU (for example, 

with OpenMP technology).
– Serial(). Addressed to the kernels that use only one CPU core and support multiple instances 

to be run.

It should be noted that in most cases the use of serial kernels is more efficient than that of the parallel ones. 
The reason is that in the first case, ttgLib library can sacrifice some CPU resources to increase the efficiency 
of  CUDA driver.  Furthermore,  serial  kernels  improve  the  performance  on  processor  units  that  support  
HyperThreading technology due to giving up virtual resources. In other words, if not using all existing CPU 
cores is optimal, ttgLib library will surely use this during optimization.

Another option is defining constraints for computing devices supported by computational kernel. To this end, 
a delegate-selector that returns  true if  the kernel can be processed on a particular device and  false 
otherwise should be passed to a corresponding primitive method. Examples:

bool cudaSelector(CudaStaticInfo *info) //we want only Fermi architecture
{ return info->GetMajor() >= 2; }
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void cudaKernel(void *data);

//...

HybridTask hTask;
hTask.CUDA(MakeDelegate(cudaSelector)) += cudaKernel;

The following predefined selectors are provided:

– X86Memory(size_t megabytes).  Defines the (common) memory size on a x86 compatible 
device that is required by the kernel.

– CudaCaps(size_t major, size_t minor).  Defines  minimal  requirements  to  NVIDIA 
CUDA architecture from the kernel.

– CudaMemory(size_t  megabytes).  Defines  the  (common)  memory  size  on  a  CUDA 
accelerator that is required by the kernel.

Therefore, the abovementioned example could be rewritten as:

void cudaKernel(void *data);

//...

HybridTask hTask;
hTask.CUDA(CudaCaps(2, 0)) += cudaKernel;
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Optimization subsystem
Namespace ttgLib::Optimization

A key subsystem of ttgLib library is the optimization engine that allows to choose optimal values for an 
arbitrary group of dynamic parameters and/or hybrid primitives thus delivering maximum performance. It is 
assumed that computations are iterative and at each step, the computational complexity depends linearly on  
the processing data size.

Implementation scheme

To activate the optimization engine, an instantiation of the OptimizationSession class should be created 
and  a  group  of  optimized  parameters  should  be  passed  to  this  class.  Then,  a  method 
OptimizationSession::StartIteration() should be called at the beginning of each iteration, and  a 
method OptimizationSession::FinishIteration() should be called at its end. Examples:

BoundedParameter<int> blockSize(16, 128);
ParameterGroup group;
blockSize.Attach(group);

OptimizationSession session(&group);
while (true)
{
    session.StartIteration();
    //Computing using “blockSize”.
    session.FinishIteration();
}

If hybrid primitives are used, the method GetOptimizationParameters() implemented in them should 
be called. This method returns all parameters used in the primitive. Examples:

HybridFor hFor;
hFor.Serial() += serialKernel;
hFor.CUDA() += cudaKernel;

OptimizationSession session(hFor.GetOptimizationParameters());
while (true)
{
    session.StartIteration();
    hFor.Process(data);
    session.FinishIteration();
}

It should be noted that during the optimization, all primitives, groups of parameters and separate parameters 
should not be deleted or assigned to other groups. Otherwise the optimization session will be 'broken' and 
any attempt to call its methods will lead to an exception of the ttgLib::FatalError type.

Optimization sessions

In the  OptimizationSession class, the following methods designed to control the optimization process 
are implemented:

– void StartIteration(). Informs about the start of a new iteration. 
– void FinishIteration().  Informs about the iteration completion. The time between  the 

start  and  the  end  of  an  iteration  will  be  used  as  a  measure  for  optimization  of  common 
parameters.

– void  FinishIteration(double  time).  Informs  about  the  iteration  completion.  The 
passed time value will be used for optimization of common parameters.

– void Suspend().  'Suspends'  the  optimization  process  thus  enforcing  the  parameters  to 
remain constant while the statistics can still be gathering. 
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– void Resume(). Resumes the optimization process.  Current parameters' values will not be 
taken into account during further optimization.

– bool IsSuspended().  Returns true if  the optimization process is suspended and  false 
otherwise.

– void Restart().  Restarts  the optimization process and deletes all  gathered statistics.   It 
makes sense to call this method when the type of computations should be changed or when 
optimization parameters should be added or deleted manually.

– void Append(ParameterBase *p).  Appends  one  optimization  parameter  to  the  current 
session. Causes a reload of optimization process.

– void Append(ParameterGroup *g).  Appends all  parameters from a given group to the 
current session. Causes a reload of optimization process.

Examples:

OptimizationSession os;

EnumParameter ep(“Left, Right, Center”);
os.Append(&ep);

BoundedParameter<int> bp(10, 20);
os.Append(&bp)

HybridTask hTask;
hTask.Serial() += serialKernel;
os.Append(hTask.GetOptimizationParameters());

//...

int iterCount = 0;

while (true)
{
    os.StartIteration();

    //Computing.
    hTask.Process(data);
    ComputeSomethingUsingParameters(ep, bp);

    //Finishing statistics gathering and stopping optimization.
    if (iterCount == 100)
        os.Suspend();

    //Restarting optimization in order to ensure, that all is good.
    if (iterCount == 5000)
    {
        os.Restart();
        os.Resume();
        iterCount = 0;
    }

    os.FinishIteration();
    iterCount++;
}

Optimization strategies

In most cases, there are some  a priori information about the application to be optimized. It  can be the 
expected number of iterations, an approximate time of a single iteration, or the time required the application  
performance to  reach  its  stable  level.  Such  an information is  useful  in  choosing the  exact  optimization 
strategy and, as a consequence, in improving the quality and the rate of algorithm learning.

To formalize the optimization strategy, a class OptimizationStrategy should be instantiated with proper 
configuration  parameters  and  algorithms.  By  default,  the  most  versatile  strategy  is  used,  i.e.  the  one 
designed for at least 200 iterations with minimum duration of 5 ms for each.



      ttgLib Programming Guide  v1.0.3                                                                                                         13   /   15      

General parameters of optimization strategies are defined with the following methods:

– Parameters::Parameter<UInt32>  &AggressiveIterationCount().  Returns  a 
parameter that defines the number of 'aggressive' iterations when the algorithm is allowed to 
substantially  decrease  application  performance  to  search  for  a  global  optimum.  Its 
recommended values range from 20 to  200 depending on the number of  iterations and the 
optimized parameters.

– Parameters::Parameter<UInt32>  &StabilizationIterationCount(). Determines  the 
number of iterations that should be omitted before beginning the optimization itself to stabilize 
the application performance. This method is extremely helpful for applications that use CPU and 
multiple GPUs simultaneously. Its recommended values range from 0 to 10 depending on the 
number of computing devices.

– Parameters::Parameter<Double> &IterationAggregation().  Returns  a  parameter 
that defines the time of shortest iteration. If iteration duration appears to be less than required, 
actual iterations will be grouped into logical ones with duration higher than the preset threshold. 
This method is designed for optimization of applications with 1 to 5 ms iterations since it allows 
to mitigate the influence of overheads and performance abrupt changes.
This parameter is recommended to be set less than 10 ms. It should be also taken into account 
that optimization will be based on logical iterations. Therefore, larger groups of iterations can 
result in a longer algorithm learning curve.

– Parameters::EnumParameter  &BasicAlgorithm().  Returns  a  list  that  defines  an 
algorithm  used  for  optimization  of  an  arbitrary  group  of  parameters  for  which  there  is  no 
additional  information.  Supporting  values  are  BasicAlgorithmType::Default, 
BasicAlgorithmType::Clicking and BasicAlgorithmType::Genetic.

– Parameters::EnumParameter  &BalancingAlgorithm().  Defines  the  type  of  the 
algorithm to be used for optimizing the group of parameters that allow load balancing (in current 
version  of  ttgLib  it  is  the  HybridFor  primitive).  Supporting  values  are 
BalancingAlgorithmType::Default,  BalancingAlgorithmType::Sticky and 
BalancingAlgorithmType::LUT.

To implement the required optimization strategy, it should be sent to the optimization session constructor.  
Examples:

OptimizationStrategy strategy;
strategy.AggressiveIterationCount() = 100;
strategy.IterationAggregation() = 0.01;
strategy.BasicAlgorithm() = BasicAlgorithmType::Clicking;
strategy.BalancingAlgorithm() = BalancingAlgorithmType::LUT;

OptimizationSession os(strategy);

//...

Basic optimization algorithms

These algorithms are intended for  optimization of  arbitrary parameters with  no  a priori information.  For 
instance, algorithms of this group will be used for any parameters passed for optimization outside the domain  
of hybrid primitives.

Up to date, the following two algorithms of this type have been implemented:
– Clicking. This is a modified version of the alternating-variable descent method. In 'aggressive'  

mode, it searches through all combinations of parameters sorted by descending performance. In  
basic mode, this algorithm tries to remain in the revealed optimum.
This algorithm is useful when the number of optimized parameters is small (from one to four) or  
the number of 'aggressive' iterations is less than 500 since in these cases, it provides the fastest  
learning curve and requires a minimal number of measurements.
In optimization strategy,  the following settings can be defined for this algorithm (through the 
ClickingAlgorithmSettings() method):
– Parameters::BoundedParameter<double>  &Quality().  This  is  a  normalized 
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parameter with values from 0.0 to 1.0 that determines the optimization quality. The higher 
the optimization quality the lower the learning rate and vice versa.

– Genetic. This is an implementation of genetic algorithm. In 'aggressive' mode, it generates 
active mutations and crossing-overs of the best sets of parameters. In basic mode, this algorithm 
selects the best sets of parameters from remaining 'population'.
This  algorithm  is  intended  for  time-consuming  computations  that  have  more  than  1,000 
aggressive  iterations  but  relatively  smooth  performance  dynamics.  It  is  also  useful  for 
optimization of large sets of parameters (more than 10).
In optimization strategy,  the following settings can be defined for this algorithm (through the 
GeneticAlgorithmSettings() method):
– Parameters::BoundedParameter<double>  &Quality().  This  is  a  normalized 

parameter with values from 0.0 to 1.0 that determines the optimization quality (by varying the 
size of  population and the number of mutations). The higher the optimization quality the 
lower the learning rate and vice versa.

Examples:

OptimizationStrategy strategy;
strategy.BasicAlgorithm() = BasicAlgorithmType::Genetic;
strategy.GeneticAlgorithmSettings().Quality() = 0.42;

OptimizationSession os(strategy);

//...

Load balancing algorithms

These algorithms are intended for balancing the computational load between various processor units. In 
particular, the primitive HybridFor is typically optimized based on these algorithms.

Up to date, the following two algorithms of this type have been implemented:
– Sticky.  The  main  algorithm  that  schedules  computational  load  and  the  set  of  computing 

kernels according to the current performance of each unit. It has two threshold values the first of 
which determines a minimal data set that could be sent to each computing device while the  
second value determines the largest data set that causes the task to be processed entirely by a 
single device.
This  algorithm  is  especially  useful  when  there  are  multiple  computing  devices  of  similar 
architecture and/or there is no time for additional learning.

In optimization strategy,  the following settings can be defined for this algorithm (through the 
StickyAlgorithmSettings() method):
– Parameters::BoundedParameter<double> &ExcludeThreshold(). This  is  a  normalized 

parameter  with  values  from  0.0  to  1.0  that  determines  the  low  'sticky'  threshold.  For 
instance, if the threshold equals 0.2 and 15% of all data should be sent to a single device, 
the destination device will not be in use. The recommended value of this parameter is 0.1.

– Parameters::BoundedParameter<double>  &ExclusiveThreshold(). This  is  a  normalized 
parameter  with  values  from  0.0  to  1.0  that  determines  the  high  'sticky'  threshold.  For 
instance, if the threshold equals 0.8 and 90% of all data should be sent to a single device, all 
processing  will  be  implemented  on  the  target  device.  The  recommended  value  of  this 
parameter is 0.9.

– LUT. This algorithm builds the performance functions for each computing device depending on 
the data  size.  This enables to take into  account  the effects  of  cache as well  as the abrupt 
changes in performance.
This algorithm is useful when computing devices have different architecture and/or the number 
of alternative computing devices is high enough (more than two threads per device).

In optimization strategy,  the following settings can be defined for this algorithm (through the 
LutAlgorithmSettings() method):
– Parameters::BoundedParameter<double> &ExcludeThreshold(). This  is  a  normalized 
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parameter  with  values  from  0.0  to  1.0  that  determines  the  low  'sticky'  threshold.  For 
instance,  if  the  threshold  equals  0.2  and  15%  of  all  data  should  be  sent  to  a  single 
device,the target device will not be in use. The recommended value of this parameter is 0.1.

– Parameters::BoundedParameter<UInt32> &Granularity(). This parameter with 
values  from 1  to  100  determines  the  number  of  points  used  to  build  the  performance 
function. The recommended value of this parameter is 10. The more the number of points 
the more the required number of  aggressive iterations.

Examples:

OptimizationStrategy strategy;
strategy.GetBalancingAlgorithm() = BalancingAlgorithmType::LUT;
strategy.GetLutAlgorithmSettings().ExcludeThreshold() = 0.1;
strategy.GetLutAlgorithmSettings().Granularity() =  5;

OptimizationSession os(strategy);

//...
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